If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4k^2-5k=0
a = 4; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·4·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*4}=\frac{0}{8} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*4}=\frac{10}{8} =1+1/4 $
| 3x*2-18x-12=0 | | 6u-2u-2u+3u=15 | | 3+4x=3+6x | | -3(1+8n=23+2n | | 18z=17 | | 8+6x-1x=16-8x | | 4x-2(x-5)=-7+4x=11 | | 7x+18+7x+8=180 | | 2.6(5.5p-12.4)=127.29 | | -7+3w=-8 | | +9-2a=-1 | | m4=12 | | +9-2a=1 | | 7x+8=7x+18 | | 6q—9=21 | | 38+42=480*b | | -1+9=2a | | 5.26=4n | | 9c-7c+5c=14 | | 90+10d200=d | | x/2+3x=525 | | -6(s-86)=-6 | | 5(3p-3)=-45 | | 32+-8x=7x+2 | | 3x2+6x-105=0 | | 2(2a-4)=32 | | .5x=92 | | 14q-6q=16 | | -u/4=39 | | 20(3)(2x)+16=40 | | 4(w+14)=2(4-4w) | | +9-1=2a |